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The effect of surface topography on an otherwise two-dimensional boundary-layer 
flow is investigated. The flow is assumed to be steady, laminar and incompressible, 
and is described by triple-deck theory. The basic problem reduces to the solution of 
a form of the nonlinear three-dimensional boundary-layer equations, together with 
an interaction condition. The solutions are obtained by a spectral method, with the 
computations carried out iteratively in Fourier-transform space. Numerical results 
are presented for several cases including three-dimensional separation. Comparison 
is made with the predictions of linearized theory. The decay corridor observed by 
Smith is confirmed for one localized configuration, but not for another having a 
broader height distribution. 

1. Introduction 
Triple-deck theory was developed independently by Messiter (1970), Neiland 

(1969) and Stewartson & Williams (1969) to describe situations in which flow 
disturbances become large enough that classical boundary-layer theory fails. Examples 
of such flows are boundary-layer separation (Stewartson & Williams 1969 ; Rizzetta, 
Burggraf & Jenson 1978) and the flow near a trailing edge (Stewartson 1969; Jobe 
& Burggraf 1974). In  both cases the singularity arising in boundary-layer theory is 
eliminated by the inclusion of a viscous-inviscid interaction condition in the triple 
deck. (For a recent review see Stewartson (1981).) 

The original theory was developed for two-dimensional flows, but recently has been 
extended to three dimensions. Burggraf (1976) reported on the linearized theory for 
supersonic flow past a ‘split-ramp’ configuration for which the ramp angle varied 
(discontinuously) in the cross-flow direction. Smith (1976) studied the effect of a 
three-dimensional constriction inside a pipe, while Smith, Sykes & Brighton (1977) 
considered the effect of a small three-dimensional surface perturbation on a two- 
dimensional oncoming boundary layer. Sykes (1978) has since extended this analysis 
to include the effect of stable stratification, while Duck (1980) included the effects 
of an unsteady perturbation on the flow. 

However, in most of these three-dimensional studies only linearized solutions were 
obtained, valid for vanishingly small perturbations. (An alternative limiting case is 
the study by Duck (1980), who obtained linearized solutions by considering the limit 
of increasing rapid variations of surface irregularity.) The full nonlinear problem 
requires a numerical solution of the boundary-layer equations. A number of corres- 
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ponding nonlinear two-dimensional problems have been treated successfully, and are 
now fairly well understood (see, e.g., Rizzetta et al. 1978; Sykes 1978). Smith (1980) 
considered the three-dimensional ‘ free-interaction ’ problem relevant to pipe flows, 
while Sykes (1980) obtained solutions of Smith’s equations relevant to flows over 
surface irregularities inside pipes. Sykes also interpreted his study as that of an 
external flow with infinitely stable stratification. The corresponding three-dimensional 
interacting-flow problem has not been treated as yet. Sykes (1980) noted that such 
problems proved intractable using his finite-difference method, because of the 
exponential growth of eigensolutions. Consequently, to obtain convergent solutions, 
he was forced to cut off all but a few wavenumber modes in the crossflow direction. 
Ode aim of this paper is to present a satisfactory method of obtaining solutions for 
three-dimensional incompressible flows of this type. 

The standard approach to solving the linearized equations in two- and three- 
dimensional triple-deck situations has been to  use Fourier-transform methods, and 
this was the genesis of a spectral method developed by Burggraf & Duck (1981) for 
solving the full nonlinear two-dimensional triple-deck problem. I n  this previous paper 
results of spectral computations were shown to compare very favourably with 
standard numerical (i.e. finite-difference) techniques. I n  the present paper we extend 
this two-dimensional procedure to  external three-dimensional situations, for which 
finite-difference methods have not proven successful. 

2. Equations of motion 
The flow structure is given in some detail by Smith et al. (1977), and so details here 

will be kept to a minimum. The basic flow configuration is shown in figure 1.  We 
consider the flow past a flat plate, on which is situated a small protuberance. If U ,  
is the flow speed far from the plate, L the distance of the protuberance from the 
leading edge of the plate and v the kinematic viscosity of the fluid, a Reynolds number 
may be defined by 

Re = U ,  Llv ,  

which we shall assume large. As in previous triple-deck analyses, it is convenient to 
define a small parameter 

We assume also that the flow is everywhere steady, laminar and incompressible. 
Cartesian coordinates (Lx, Ly, Lz) are chosen with origin near the surface irregularity, 
while the flow velocity is (U, u, U ,  v, U ,  w) and the pressure is written as puZ,p, 
where p is the density of the fluid. Far from the plate the flow is directed along the 
positive x-axis. Thus we restrict the unperturbed oncoming boundary layer to 
two-dimensional type, for which there is no crossflow component of velocity. 

We consider surface irregularities of height O(Ls5) and length and width O(Ls3). 
The horizontal coordinates are then rescaled as 

c = Red.  (2.2) 

z 
2 = - = O(1) 

€3 

(2.3) 

The ‘main deck’ is defined by the vertical scaling 
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FIQURE 1.  Schematic of lower-deck flow past cosine-squared hump. 

Smith et a l .  (1977) found the solution to develop as 

u = U , ( J ) + € A ( X , Z )  U&j)+0(€2),  

W =  + 0(63), €2D(X,  2) 

UB(d) 

p = €2P(X, Z ) ,  

where 

and U,(J) is the oncoming velocity profile (for example the Blasius profile). 
The pressure is governed by Laplace’s equation in the ‘upper deck’ where 

= 0 ( € 3 ) .  (2.6) 

Matching with the main-deck solution yields a relationship between P ( X ,  2) and 
A(X, Z),  namely 

Since the main deck fails to satisfy the surface boundary conditions a ‘lower deck’ 
is required, where the motion is of a viscous nature. Here 

(u,  v, w , p ,  y )  = (EU, € 3 B ,  € W ,  €2P, €5 F), (2.8) 
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and the equations of motion, to leading order, are 
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au a P  aw 
ax Z - F + Z = O ~  -+ 

au au au ap a2u u-+8 +w-=--+ ax 3 az ax 5F' 
aw aw aw ap a2w u-+P +W-=--+ ax 'ZF az az 3 F  

(2.9a) 

(2.9b) 

( 2 . 9 ~ )  

The boundary conditions are 

U =  8 =  W = O  on B = h F ( X , Z ) ,  

u - Ub(0) [ B+A(X, Z)] 

where the prime denotes differentiation with respect to  a single argument. 
It is convenient to  make the following transformations : 

Y = F - h F ( X , Z ) ,  

v = 8- UhF,-WhF,, (2.11) 

and also we may take UL(0) = 1 without loss of generality, as shown by Smith et al. 
(1977). Equation (2.9) remains unchanged, with Y and V replacing B and 8 
respectively, while 

U =  V =  W = O  on Y = O ,  ( 2 . 1 2 ~ )  

U -  Y+A(X,Z)+hF(X,Z) as Y+co (2.12b) 

(the remaining boundary conditions are unchanged). We now have a closed mathe- 
matical problem. Smith et al. (1977) considered the limit h+O, and then obtained 
a linearized solution about a uniform shear flow. I n  $ 3  we consider a solution of the 
full nonlinear problem, for h = O(1). 

3. Method of solution 
We now extend the two-dimensional work of Burggraf & Duck (1981) to three 

dimensions. As before, the analysis is restricted to the lower deck, which can be 
matched to the outer flow by use of analytical results for the linear equations of the 
main and upper decks. First split the X-component of velocity into its perturbed 
and unperturbed parts : 

After differentiating (2.9b) with respect to Y, (2.9a-c) become 

I/ = o+ Y .  (3.1) 

ox+ vy+ w, = 0, 

Yo,,- Wz- o y y y  = B y  Wz- VOy,- OOxy- Wy 0,- WO,,, 
YW,- WYY+PZ = - BWx- VW,- ww,. 

( 3 . 2 ~ )  

(3.2b) 

( 3 . 2 ~ )  



Three-dimensional triple-deck $ow over surface topography 5 

Note that Smith et al. (1977) concerned themselves with the system (3.2) with the 
right-hand-side terms neglected. 

We find it convenient to introduce the perturbation streamwise shear 7  ̂defined by 

(3.3) 

The double Fourier transform is denoted by a double asterisk; thus, for example, 

~ * * ( k ,  1, Y) = jm Im f(X,  Y, 2) e-ikX-izZ dX dZ. (3.4) 
-cc -m 

Further, we also make a transformation in the Y-direction (for later use) by 

y = f ( T L  
where we shall assume o < q < q c c < l ,  

o <  Y <  Ycc<oo .  

T 
Specifically, we choose f ( T )  = - 7  

(3.5) 

which is appropriate, given the decay of W indicated by (2.10) for Y-+ a. Then the 
equations of motion (3.2) become 

+iZW** = 0, (3.7a) 
1 av** 

(3.74 

The boundary conditions for this system are then 

V** = W** = 0 on 7 = 0, 

T** = W**+O as q+qcc. 

One further boundary condition is required, and this arises from the X-component 
of the governing equation (2.9b) evaluated on r ]  = 0, to give 

1 
7:*(k, 1,O) = ikP**(k, 1) .  (3.9) 

An interaction condition is needed to close the system of equations, and this arises 
from the boundary condition (2.12b), together with the relationship (2.7) linking P 
to A. Equation (2.12b) requires 

s,"" f (7)  T** dq = A** +hF**, (3.10) 
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while the double Fourier transform of (2.7) is 

P. W .  Duck and 0. R. Burggraf 

- 
x -  - W**(Ay) 

- 
x x x x  
x x x x  0 ~ * * ( A v )  
x x x x x x  x W**(2A7) 
x x x x x x  0 7**(2h7) 

x x x x x x  x W**(3A7) 
x x x x x x  0 7**(3A7) 

x x x x x x  x W**(4A7) = R  (3.19) 
x x x x x x  0 7**(4A7) 

x x x x x x  x W**(vm -2A71) 
x x x x x x  0 7**(700-2A7) 

x W**(tm-Av) x x x x  
x x x x  0 7**(7m-A71) 

x x x x x x  ... x x x x x x  x P** - - - _  

k2A** 
( k 2  + 12): * 

p * *  = 

Combining (3.10) and (3.11) to eliminate A** yields the final equation 
hk2F** 
( k 2  + 12)? 

(3.11) 

(3.12) 

The solution procedure is as follows. We choose a value of qa, (typically 0.95), such 
that (3.5) is replaced by 

O G T G B ~ ,  I 
O G Y G Y , B l .  

Then (3.8) is approximated by 

7**(k ,  1 ,  qm) = W * * ( k ,  I ,q,)  = 0. 

The range of ( k ,  1 )  is to be truncated to 

kmin G k G kmax 9 

lmin G 1 G lmax, 

(3.13) 

(3.14) 

(3.15) 

where I kmin ), I  kmaX I, I Imin I, I I,,, I are all suitably large. We then consider J, K and 
L points in the 7-, k -  and 1-directions respectively, and define 

(3.16) 
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where a cross denotes a non-zero entry. The full bottom row occurs because of the 
interaction condition (3.12), while the half-full right-hand column occurs because of 
the pressure in the 2-component of momentum (the pressure was eliminated from 
the X-component by differentiation). At  this stage, the equation of continuity is not 
req.uired. Equation (3.19) is of a form suitable for Gaussian elimination, although not 
strictly of a banded nature. 

The procedure adopted was to initiate the solution by setting the right-hand side 
of (3.19) to zero; thus solving (3.19) at each (k, l)-station, the first iteration produces 
solutions of the linear problem treated by Smith et al. (1977). When the entire 
(k,l)-domain has been covered once, the right-hand side of (3.6) is evaluated. It is 
not until this stage that the equation of continuity (3.7a) is required to evaluate I/'**. 
The actual evaluation of the right-hand sides of (3.7b, c) is accomplished using the 
fast-Fourier-transform technique of Cooley BE Tukey ( 1965). The transformation is 
applied twice for each iteration, with the first application transforming the spectral 
variables back into physical variables. The product terms involved in (3.7b, c) are then 
simply multiplied together and the results are then transformed back into spectral 
variables, again using the fast Fourier transform method. The process outlined 
above is repeated, but with a non-zero right-hand side in (3.19), again sweeping 
through the entire range of k and 1. This procedure is applied repeatedly, until con- 
vergence is obtained. The fast-Fourier-transform method was chosen because 
O(JKL(log, K +  log, L)) operations are required compared with O(JKL(L + K)) 
operations in the case of straightforward quadrature-inversion methods. 

The surface perturbations treated here are symmetrical about 2 = 0; in this case 
a number of very useful symmetries of the solution exist. In particular 

T**(k ,  -1,  Y) = T**(k ,  I, Y), 

P**(k, - 1 )  = P**(k, 1), 

I W**(k, -1,  Y )  = - W**(k, 1, Y), 

T**( - k, I ,  Y) = complex-conjugate{T**(k, I, Y)}, 
(3.20) 

I P**( - k, I) = complex-conjugate{P**(k, 1)) 

W**( -k, 1, Y) = complex-conjugate{ W**(k,  I, Y)}. 

By implementing these symmetries in the computer program, large savings result 
in computer storage and time. In  addition, we note that because of the expected decay 
of the solution as I X2 + 2, 1 --f a0 it is possible to set 

T**(O,I, Y) = W**(O,l, Y) = P**(O,I) = 0. (3.21) 

Usually around 20 iterations were required for convergence to about four-decimal- 
place accuracy. For large surface heights, a certain amount of under-relaxation was 
required; the pressure, for example, was updated from one iteration to the next 
according to the rule 

p**(k, l)new = ,.,,p**computed (k, I) + (1 - w )  P**Old(k, I), (3.22) 

and similarly for T** and W**. In the worst cases the relaxation factor w was taken 
as low as 0.3, although no extensive optimization of this parameter was carried out. 
For these large hump sizes, around 50 iterations were required for the same degree 
of accuracy. 
. It may be noted that the results discussed in the following section have been 
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computed by the method discussed and by an alternative method as well. One of the 
authors (0. R. B.) has developed a spectral method in which the longitudinal flow and 
crossflow are uncoupled by use of the new variable 

Then, in place of (3.19), there results a similar matrix equation for g** alone, together 
with a corresponding one for Wg* alone. The pressure is determined by u** (and the 
surface shape), independently of W:*. The remaining details of the method are as 
described above, including the solution procedure. Results were calculated on a 
uniform Y-grid, using Richardson extrapolation for improved accuracy. The coordi- 
nate scaling (3.6) was found to produce results of the same accuracy, without 
Richardson extrapolation, with far fewer gridpoints in the Y-direction. 

4. Discussion of results 
The solution procedure just outlined is based on neglecting the nonlinear terms in 

the first iteration. Consequently, the computation in the spectral plane (k, I )  can be 
checked against analytical formulas for the linearized solution in spectral variables. 
Comparisons of this type were made for a variety of cases with excellent agreement. 
I n  addition, the results in the physical plane ( X , Z )  via the discrete fast Fourier 
transform compared well with independent numerical integrations from linearized 
theory, which were carried out to much greater precision. 

A periodic ridge 

The only results available for checking the nonlinear computation are those of Sykes 
(1980), based on finite-difference solutions of the three-dimensional triple-deck 
equations for the periodic surface-height distribution 

7LZ 
cos2xX cos- (1x1 < 0.5, all Z ) ,  F ( X ,  2) = L 

[ 0 (I X I > 0.5, all 2 ) .  

This configuration can be viewed as a range of hills and hollows aligned along the 
Z-axis. Sykes’ application was to  a stably stratified atmospheric boundary-layer flow, 
so that the usual pressure-interaction condition (3.10) was replaced by a zero- 
displacement condition for the upper-level air flow. (This problem also corresponds 
to  Smith’s (1976) pipe-flow equations.) In  order to stabilize his marching computation, 
Sykes used a pseudospectral computation in the Z-direction ; i.e. he evaluated 
Z-derivatives from a Fourier-series representation of the velocity components, 
truncating the Fourier series after the third harmonic. Higher harmonics were found 
to  grow too rapidly to be retained. For purposes of comparison, our spectral program 
was modified to use the same zero-displacement condition, and the same spectral grid 
in the Z-wavenumber variable (i.e. the same number of terms in the Z-Fourier series). 
It may be noted that there is no difficulty in utilizing more Z-wavenumber gridpoints 
in the spectral method, since the marching instability does not occur in the spectral 
method. 

Figure 2 ( a )  compares results of the spectral program with those of Sykes for the 
longitudinal surface stress on the lines of symmetry through the hump, 2 = 0, and 
the hollow, Z = L = 0.8. (Sykes’ data are taken from the dotted curves in his 
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FIGURE 2. Distribution of properties on periodic ridge for h = 2: -, Sykes’ results, 2 = 0; - - - -, 
Sykes’ results, 2 = L = 0.8; (+, x ), present results for 2 = 0 and 0.8. Spectral results h2 
extrapolated with J = 21 and 41. (a) Longitudinal shear stress. ( b )  Pressure (spectral results shifted 
by 0.05; see text). 

figure 8.) The height of the hump (and depth of the hollow), h = 2, is large enough to 
produce separated regions behind the humps and in the hollows. The spectral grid is 
coarser but more extensive than Sykes’ grid, corresponding to the physical range 
-4  < X < 4 ;  Sykes’ computational grid covered the range -0.8 < X < 0.6 (ap- 
proximately), with the flow represented by formulas from linearized theory for 
X < -0.8. Nevertheless, the two computations compare quite well, with the proviso 
that both are based on only eight terms (plus constant) in the complex Fourier series 
for the Z-variation. Additional spectral computations were made with double the 
number of Z-harmonics; the results were within about two percent of those of figure 
2 (a), suggesting that Sykes’ cosine-shaped configuration has only a small degree of 
nonlinear interaction in the Z-direction, at  least for h = 2. 

The pressure distributions are shown in figure 2 ( b ) .  Originally the spectral results 
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Grid K kmax L ~m,, J Tm 

1 64 7.111 64 5.079 11  0.95 
2 32 7.226 32 5.161 1 1  0.95 
3 32 10.323 32 10.323 1 1  0.95 
4 32 10.323 32 10.323 21 0.95 

TABLE 1. Grid parameters 

lay about 0.05 above the results of Sykes (the range of P i s  from about -0.7-+0.3). 
However, after shifting the spectral data down by this amount (as plotted), the two 
sets of data agree about as well as those for the surface stress. The cause of this bias 
error can be explained as follows. The absolute pressure level is determined by the 
boundary condition that pressure approach the free-stream value (zero) at infinity. 
This condition is represented spectrally by requiring the integral transform of the 
pressure to vanish a t  the origin k = 1 = 0. However, the finite transform interprets 
this condition as vanishing of the mean of its periodic physical pressure. For an 
axisymmetric protuberance this bias error diminishes as the reciprocal of the area 
of the double period of the transform (i/XmaxZmax), and so the error is negligible 
for typical grids. In the case treated by Sykes the bias error diminishes only as the 
reciprocal of the X-period, since the flow actually is periodic in the Z-direction. 
Consequently, the bias error is more significant for that case. Sykes established his 
pressure level by matching to the linear theory, and that approach would improve 
the spectral results also for this case of transversely periodic topography. 

Isolated peaks and hollows 

For ease of reference the various combinations of grid parameters used for the 
following numerical studies are given in table 1. In the computational cycle the N 
gridpoints of the physical and spectral coordinates are connected by the relation 

Ak AX = 2 n / N ,  

and similarly for AZ and Al. This relation arises from the replacement of the integral 
transform by the finite transform, corresponding to the maximum wavenumber 
allowed in the spectral solution. In the table J denotes the number of Y-gridpoints, 
K the number of k-gridpoints (and similarly L for the 1-grid), while k,,, and Z,,, 
denote the half-range of the spectral coordinates: - k,,, < k < k,,,- Ak) -Z,,, < 
1 < l,,, - Al. The asymmetry of the k- and Z-ranges is only apparent; the periodicity 
of the discretized solution requires that, in particular, P**(k,,,, I )  = P**( - k,,,, Z), 
and similarly for l,,,. 

The second class of topography chosen for this study is the finite cosine-squared 
hump shown in figure 1 : 

where R2 = X2 + Z2. The linearized solution for this case was considered in detail by 
Smith et al. (1977), providing a basis for evaluation of nonlinear effects. Following 
Sneddon (1979), the double Fourier transform of (4.2) can be written in the form 

F**(k, 2) = 2n rJ,(hr) cos2$r dr, s,' (4.3) 
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where h2 = k2+12. Equation (4.3) was used to generate the surface height transform 
for the solutions given here. The alternative direct transformation of (4.2) using the 
FFT was carried out also with no appreciable difference in the results. Since this 
transform needs to be evaluated only once, there was no appreciable difference in 
computing time either. 

The cosine-squared hump of (4.2) has a restricted range in physical space, being 
identically zero outside a unit radius. On the other hand, in transform space it  has 
infinite range, decaying only algebraically to zero with increasing radius. A third class 
of surface topography with the opposite character is represented by the shape 

F ( X , Z )  = [(l+X2)(1+22)]-1 (4.4) 

F**(k, 1 )  = n2 exp ( - 1  kl-1 1 I). (4.5) 

Thus (4.4) displays a slowly decaying height in physical space, while (4.5) shows a 
very rapid decay in transform space. Height contours of the shape (4.4) are displayed 
in figure 3; the shape appears to be that of a rounded pyramid over most of its 
elevation. In the following discussion we shall refer to shapes (4.2) and (4.4) as 
cosine-squared shapes and pyramid shapes respectively. 

Surface properties for the cosine-squared hump with h = & 3 are shown in figure 4. 
The computations were based on spectral grid 3, listed in table 1. Grid 4 was utilized 
also to test the effect of refining the Y-grid size ; the results for the two grids differed 
by at most 2 %. The pressure distribution along the centreline (2 = 0) is presented 
in figure 4(a) .  The linearized solution is shown as well, and is scaled to h = 3 for ease 
of comparison. For the hump the general features are seen to be the same for both 
linear and nonlinear results, although the pressure extremes are larger for the 
nonlinear results. On the other hand, the pressure distribution for hollow (h  = -3) 
is quite different from the linear theory, with much smaller suction occurring. The 
pressure peak at reattachment rises to the same level as for the hump, however. 
An inflection in the pressure over the deepest part of the hollow is evident in the figure, 
suggesting that a pressure plateau is starting to develop like those observed in the 
two-dimensional solution of Burggraf t Duck (1981) and of Rizzetta et al. (1978). 

The corresponding surface values of the shear stress in the mainstream direction 
are shown in figure 4(b) ,  with similar conclusions as for the pressure. In  this case, 
the negative stress over the bottom of the hollow indicates a sizable separated region 
there, as would be expected with incipient development of a pressure plateau. The 
separated region for the hump is much smaller than for the hollow. A pronounced 
overshoot in the shear is observed downstream near the end of the hollow, with 
corresponding undershoot of the pressure in figure 4 (a).  The crossflow surface shear 
stress is shown in figure 4 (c) for the line 2 = -0.5 parallel to the longitudinal centre- 
line. Again the nonlinear and linearized solutions are similar over the entire hump, 
while the hollow shows an inflection in the crossflow shear followed by a strong negative 
peak halfway up the rear side of the hollow. Comparison with figure 4 (b )  shows that 
this peak in the crossflow shear occurs just downstream of reattachment. 

Figures 5(a-c) show contours of pressure and of longitudinal and crossflow shear 
components for the cosine-squared hump. The top part ofeach figure is for the hump 
with h = +3, while the lower part is for h = -3. Since the linearized solution is 
symmetric in 2 this form of presentation allows easy assessment of nonlinear effects. 
At  large distances the contour patterns for the hump and the hollow are similar; 
however, near the hump (and hollow) the larger amplitude of the disturbance results 

for all X and 2. This function has the Fourier transform 
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FIGURE - 4(a). For caption see facing page. 



Three-dimensional triple-deck flow over surface topography 13 

Z = 0, h = 3 

3 
0, 3 

(b)  

0, 3 linearized 

-2.0 -1.5 -I.O-O.S?- ' 0. T .  -. D 

y i . 0  I:5 2.0 X 

- 2. 

FIGURE 4. Distribution of properties on cosine-squared shape, h = f 3. (a )  Pressure. 
(b)  Streamwise wall shear. (c) Crossflow wall shear. 

in a distortion of the contours from their linearized counterparts. This effect is most 
evident in the separated region at the bottom of the hollow, especially for the surface 
shear in figures 5 (b, c ) .  The corridor effect noted in the linearized solutions of Smith 
et al. (1977) is evident in the appearance downstream (X > 2) of the off-axis contours 
7, = 1 in figure 5 ( b ) .  

The singular points at separation and reattachment are of special interest ; these 
occur a t  the intersections of the zero contours of the longitudinal and crossflow surface 
shear. There are only two such singularities for the cosine-squared shape, both on 



14 

2 

1 

0 

- 1  

P.  W .  Duck and 0. R.  Burggraf 

(4 

I J 
-2  - 1  0 1 2 

FIGURE 5(a ,b) .  For caption see facing page. 
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FIQURE 5. Contours for cosine-squared shape : upper, h = + 3; lower, h = - 3. (a) Pressure. 
( b )  Streamwise wall shear. (e) Crossflow wall shear. 

the centreline 2 = 0. Those for the hump both occur on its downstream side. The signs 
of the surface shear components in the neighbourhood of the singularity determine 
its type: the singularity at X = 0.5 is a separation node, while that at  X = 1.12 is 
an attachment saddle point. For the hollow the singularity at X = - 0 . 5 3  is a 
separation saddle point, while that at X = 0.32 is an attachment node, a reversal of 
the situation for the hump. These results agree with the surface ‘ streamline ’ patterns 
obtained by Sykes (1980) for the case of an infinite row of humps and hollows. 
Lighthill (1963) and others have shown that the number of nodal points must exceed 
the number of saddle points exactly by two for a finite closed body. Since our case 
can be regarded as a local perturbation on such a body, any additional nodes and 
saddles must exactly cancel in number. The count of singularities above is seen to 
satisfy this condition. 

Numerical solutions for the cosine-squared hump were attempted for the case h = 5 
also, based on spectral grid 3. The results were qualitatively the same as described 
above; however, the separated region was slightly more extensive, resulting in 
spurious oscillations of the shear values in the separated region. Since no new features 
of the flow were evident, this computation was not refined. We shall consider instead 
the effects of modifying the shape of the protuberance. 

For the rounded pyramid of (4.4) triple-deck solutions were computed for h in the 
range -7.5 < h < 7.5 for various choices of grid parameters. Results are shown only 
for the extreme cases: the hump with h = 7.5 and the hollow with h = -7.5. The 
centreline pressure and surface shears are shown in figure 6, again compared with the 
scaled-up results of linear theory. The coniparisons are quite similar to those for the 
cosine-squared shape; the greater levels reached in figure 6 correspond to the greater 
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PICURE 6 ( a , b ) .  For caption see facing page. 

amplitude of the surface height, while the greater range of the disturbance corresponds 
to the slower decay of height with distance for the ‘pyramid’ shape. The effect of 
grid size is illustrated in figure 6 ( b ) ,  where the dashed curves are for a 32 x 32 spectral 
grid, while the solid curves are for a 64 x 64 spectral grid. Both sets of solutions show 
an oscillation in the longitudinal shear in the reversed-flow region, but the amplitude 
is much reduced by use of the finer grid. All the results discussed below are for the 
64 x 64 grid. 
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FIGURE 6. Distribution of properties for pyramidal shape, h = k7.5: -, grid 1 ; - - - -, grid 2. 
(a) Pressure. ( b )  Streamwise wall shear. (c) Crossflow wall shear. 

Contours of pressure and longitudinal and crossflow shear at the surface are shown 
in figure 7 for the pyramid shape, again with the upper half-figure for the hump 
(h = + 7 .5 )  and the lower half-figure for the hollow (h  = - 7 . 5 ) .  The pressure levels 
are seen to be roughly double those in figure 5 (a), and the rate of decay is much slower, 
corresponding to the greater amplitude and range of the surface topography in this 
case. The longitudinal surface stress contours show these features as well. As 
remarked before, the reversed-flow region covers much of the bottom of the hollow. 
Note also that the contours on the forward part of the ‘pyramid’ topography tend 
to follow the height contours, especially in the hollow. The far-field pattern in this 
case cannot be seen on the scale of the figure, but the numerical results do not show 
the same behaviour as those for the cosine-squared configuration. In particular, there 
is no sign of the ‘corridor effect’ of Smith et al. (1977). This difference in the far-field 
behaviour may be attributed to the fact that for the pyramid the height decays so 
slowly that the shape controls the local flow properties all the way to infinity, whereas 
the bounded range of the cosine-squared shape makes it appear as an isolated 
delta-function on a flat surface from the far-field point of view. 

Comparison of figures 5 (b) and 7 (b) shows that the reversed-flow regions for the 
‘pyramid ’ are more extensive than those for the cosine-squared hump, corresponding 
to the greater range and amplitude of the former. In the former case the separation 
point lies quite near the tip of the hump, whereas that for the cosine-squared hump 
lies about halfway down its back. Thus the local flow conditions for separation are 
quite different in these two cases, and the resulting types of separation and 
reattachment may be expected to differ as well. 

Figures 8 (a, b) show the surface ‘streamlines ’ for the pyramidal hump and hollow 
respectively. These curves are the paths taken by particles located an infinitesimal 
distance above the surface, and are determined by the equation 

dZ - - 7 2  

dX r2’ 
_ -  
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FIGURE 7 (a ,  b) .  For caption see facing page. 
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FIGURE Contours for the pyramidal shape: upper, h = +7.5;  lower, h = -7.5. (a) Pressure. 
(a) Streamwise wall shear, (c) Crossflow wall shear. 

where 7, and 7, are the longitudinal and crossflow shear shown in figures 7 (b ,  c ) .  The 
solution curves were determined by Runge-Kutta integration, with 7, and 7, 

determined locally by four-point linear interpolation using the four corner points of 
the original data grid. Most particle-path integrations were originated at  points 
evenly spaced along the left edge of the plots. However, to fill out the field, it  was 
necessary to originate some paths on the right edge, integrating backwards along the 
trajectory; for the hollow (figure 7 b )  the enclosed central area required integrating 
both ways from origins on X = 0. Certain of these pathlines are shown as terminating 
artificially in the middle of the flow field; this was done for the purpose of clarity 
in interpreting the figures and should not be taken as being physically meaningful. 

The zero-contours of longitudinal and crossflow surface shear intersect only on the 
longitudinal centreline for the pyramidal hump. The directions of the surface stress 
vectors a t  these two points in figure 7 (and the surface streamlines in figure 8a)  show 
that the singularity at X = 0.45 is a nodal point of separation, while that at X = 2.90 
is an attachment saddle point. These classifications are the same as for the cosine- 
squared hump. However, when the pyramidal hollow is considered (figures 7 , 8 b ) ,  the 
conclusions are different. The singularities on the centreline in this case are saddle 
points at  both separation point (X = - 1.12) and reattachment point (X = +0.83). 
The necessary cancelling nodes lie off-axis just ahead of the transverse line through 
the bottom of the hollow, at  X = -0.15, 2 = & 1.09. These nodes are spiral foci 
exhibiting weak convergence, indicating that they are points of separation. The 
stronger upstream saddle point of separation is seen to be consistent with the 
direction of the flow entering the hollow ; the sharply skewed height contours of 
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FIGURE 8. Surface streamlines for pyrainidal shape. ( a )  Hump for h = +7.5.  ( b )  Hollow for 
h = -7 .5 .  

the pyramidal shape induce a crossflow pressure gradient that  causes the upstream 
flow to converge toward the centreline. This convergence to  the axis is seen from 
figure 7 (c) to reverse at X = - 1.78, after which a weak divergence occurs in 
anticipation of the approaching saddle point. The reattachment saddle corresponds 
to  the channelling of the flow toward the axis by the strongly converging height 
contours as the flow climbs the rear surface of the hollow. 

For the hump the streamlines near the line of symmetry ( Z  = 0) flow around the 
hump and then close in to the separation point partway down the leeward side of 
the hump. The streamlines farther out branch away from the attachment saddle point 
downstream. All points on the surfacc are accessible by surface flow from upstream. 
The case of the hollow contrasts sharply, with a large region of inaccessibility to 
surface streamlines coming from upstream. The strcamline stemming from the point 
of separation is a limit line of separation that does not close back into a downstream 
reattachment point. Tracing the limit line of attachment away from the attachment 
point on the line of symmetry, i t  is sccn that i t  evolves from a limit cycle. within 
which the streamlines diverging from thc attachment line converge to a spiral focus, 
suggesting the origin of a separation vortex springing from the surface. The locations 
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of these vortical separation points (one on each side of the line of symmetry) are in 
the lateral corners of the pyramid, rather high up from the bottom. The more-rounded 
shape of the cosine-squared hollow does not produce such a phenomenon. 

The saddle-to-saddle streamline connection in figure 8 ( b )  is not a stable configuration 
as a topological structure; that  is, a slight lateral displacement of one saddle point 
relative to  the other breaks the connection, so that some fluid particles near the 
singularities would follow paths far removed from those of the undisturbed configu- 
ration. I n  the case of figure 8 ( b )  such a disturbance would result in particles from 
one recirculatory cell passing across the central axis into the other cell. Physically 
this situation could correspond to an oscillatory motion of the separation point, and 
the flow pattern shown in the figure would then represent an average state. The 
question of the dynamic stability of such a perturbation could be answered only by 
analysis of the unsteady equations of motion. 

I n  conclusion, the spectral method is confirmed to be an efficient technique for 
treating flows involving appreciable areas of flow reversal, bypassing many of the 
difficulties encountered in conventional finite-difference methods. For smooth surfaces 
the technique is especially efficient from the point of view of requiring surprisingly 
few gridpoints for reasonable accuracy; this feature of the method makes it a powerful 
technique for computing three-dimensional flows of this type. On the other hand, 
application of the method is limited by the usual restrictions of convergence of the 
Fourier transform, so that surface shapes with discontinuities of slope are more 
difficult to  treat. As an example, the method has been applied by one of the authors 
(O.R.B.) to the flow past a hemispherical bump on a plane wall; in this case both 
the Fourier transform and the numerical solution converge, but an oscillation is 
evident in the wall-shear distribution. The results show that the amplitude of the 
oscillation decreases linearly with spectral grid size. However, it is estimated that 
about 64 megabytes of computer storage would be required to reduce the amplitude 
to under 1 yo, contrasting sharply with the results described above, all of which ran 
in under one megabyte of storage. 

This research was sponsored by the Office of Naval Research, United States Navy, 
under Contract N00014-76-C-0333, NR 061-194. 
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